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Abstract— Handwritten character recognition is an active and widespread research area in the field of computer vision. However 

successful implementation of handwritten character recognition systems, especially for cursive handwriting, remains a challenge. Over the 

years, different shallow and deep neural networks have been proposed for Handwritten character recognition and most of the experiments 

are done on a few widely used benchmark datasets. Gauging the generalization ability of the deep neural networks for different cursive, 

handwritten, vernacular texts is quite challenging. Our initial research showed that image augmentation can be used as a regularization 

tool in neural networks and a combination of augmentation techniques (such as Cutout, Cutmix, and Mixup) can be powerful regularizers in 

classifying handwritten characters from images. In this paper, we focus on comparing a shallow and a deep neural network architecture for 

recognizing cursive handwritten texts from images using a novel combination of augmentation methods and loss functions (cross-entropy 

loss and online hard example mining). Through our experiments, we establish the best combination of advanced image augmentation 

techniques along with loss functions best suited for the multiclass-multilabel image classification task. 

Index Terms—Cutout, Cutmix, Handwritten Character Recognition, Image Augmentations, Mixup, Online Hard Example Mining, Resnet, 

SeResnext.   

——————————      —————————— 

1 INTRODUCTION                                                                     

ver the last decade, deep learning research has shown 
significant success for the conceptual bases of machine 
learning and artificial intelligence. Deep learning-based 

classification and recognition of handwritten characters [1], [2] 
from image data is crucial for the advancement of automation 
and human-machine interaction in numerous real-life use cas-
es. Over the years several benchmark datasets (such as MNIST 
[3]) have been developed and studied primarily focusing on 
classifying language-specific components. 

Existing deep neural network architectures have been thor-
oughly studied on the widely used benchmark datasets [4]. 
However, the model’s generalization ability across different 
languages with different complexity levels, especially for cur-
sive handwriting, are not thoroughly explored. The higher the 
number of alphabets and potential diacritics (accents) present 
in a language, the more challenging the character recognition 
from cursive handwriting task becomes. 

The image datasets inherently suffer from variability in 
terms of cursive writing. In this paper, we focus on image 
augmentation techniques to improve the accuracy and gener-
alization ability of different neural network architectures. Our 
experimental results show that heavy image augmentation 
techniques with “Online Hard Example Mining (OHEM)” [5], 
[6], [7], [8] achieve the highest validation macro averaged re-
call score for deeper models. This suggests planning the aug-
mentation strategies based on the depth and complexity of the 

deep neural network architecture. Our results also demon-
strate that the inclusion of Cutout [7] in low augmentation 
settings ends up hurting the overall model performance. For 
all experiments, we leverage the Bengali AI dataset [9] and 
report the macro averaged recall metric on a fixed validation 
dataset. 

 

2 DATASET DETAILS 

The dataset used in this experimentation process contains im-
ages of multiple variations of Bengali hand-written characters. 
In the Bengali language, along with 18 potential diacritics, 
there are 11 vowels and 38 number of consonants. Due to the 
high volume (around 13000) of graphemic variations in Benga-
li, recognition of Bengali hand-written images has additional 
complexity. There are mainly three components of Bengali 
graphemes: 

 Grapheme root: 168 Classes in the dataset  
 Vowel diacritic: 11 Classes in the dataset  
 Consonant diacritic: 7 Classes in the dataset 

3 RELATED WORK 

One of the early applications of back-propagation networks 
for recognizing handwritten digits from images was presented 
by Y. Lecun et al. [1]. A comparative study of the performance 
of several classifier algorithms on standard datasets (NIST's 
Special Database 3 and Special Database 1) was shown in [10]. 
Besides raw accuracy, rejection, training time, recognition 
time, and memory requirements were also considered there. 
Different machine learning architectures such as Multilayer 
Perceptron (MLP) [11], [12], the radial basis function (RBF) 
network [13], [14], deep learning [15], [16], [17] etc. have been 
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thoroughly studied in literature for character recognition.  It 
has also been proven that feature extraction techniques are 
influential in the performance of character recognition (includ-
ing cursive handwritten texts) [18], [19], [20], [21], [22], [23], 
[24], [25] by machine learning algorithms.   
Unlike existing works, we plan to show here a combination of 
image augmentation techniques to achieve improved classifi-
cation performance. In our previous work [26], we thoroughly 
evaluated the impact of various augmentation strategies on 
model performance for shallow (in the context of pretrained 
Convolution Neural Networks) neural network architectures 
(Resnet34). In this paper, we evaluate all possible combina-
tions of highly advanced image augmentation pipelines for 
deep CNN models (seResNext50_32X4d). 

4 TECHNICAL DETAILS 

4.1 Pretrained Models 

All the modern state of the art Deep Learning image classifica-
tion problem is now getting solved using the concept of trans-
fer learning. Instead of training a model from scratch, a pre-
trained model which has been trained previously on a differ-
ent learning problem can be used with the model architectures 
and along with the weights. Generally, these models are 
trained on large benchmark datasets like Imagenet, CIFAR, 
and the process of using these pre-trained models on different 
image recognition tasks is called Transfer Learning. To fit any 
pre-trained models to new learning problems, we remove the 
last fully connected layer and a new a fully connected layer to 
match the current image recognition task. In this paper we use 
two pre-trained models:   

 SeResnext50 – a ResNext50 [27] model with special 
Squeeze and Excitation Blocks [28]  

 Resnet34 [29]  
 

4.2 Loss Functions 

In the analysis, we deploy Cross-entropy (CE) loss and OHEM 
(Online Hard Example Mining) loss functions. 

Cross-Entropy loss or Log loss can be used as a Perfor-
mance metrics in case of a classification model with a proba-
bilistic output. The higher the difference between the predict-
ed probability and the actual class label, the higher the Cross-
Entropy loss to penalize the deviation from the actual class.  

Hard Example Mining is a way to pick hard examples 
(training examples with greater loss values) to improve model 
performance. In this process first, we train the neural network 
for a few instances, then you identify the examples with great-
er loss values and run the network along with the previously 
identified examples. This whole process is sub-optimal and 
computationally expensive since the network is frozen. Online 
Hard Example Mining [7] helps to solve the above-mentioned 
issues. In a batch-wise manner, OHEM performs a hard ex-
ample of mining. For any given batch, once the forward prop-
agation is done, the loss is calculated for all training examples. 
Then OHEM finds hard examples in that batch that have 
higher losses and it only back-propagates the loss computed 
over these selected training examples. 

 

4.3 Augmentation Techniques 

Deep Convolutional Neural Networks (CNN) typically runs 
by leaning millions of parameters for tasks like Image Classifi-
cation. However, they also run into the potential problem of 
overfitting. Many Image Augmentation techniques can help to 
tackle the problem of overfitting by generating new training 
examples from existing ones to increase generalization. Some 
of the techniques used in this paper are discussed below: 

Cutout: Cutout augmentation [7] adds noise to the incom-
ing batch dataset by dropping of contiguous regions ensures 
that entire dropped out regions are propagated throughout 
the network via the feature maps. Cutout introduces regulari-
zation by not allowing the network to rely only on a specific 
set of visual features. Cutout ensures that the entire context of 
the image is utilized for the task. An example of cutout aug-
mentation is shown in fig. 1: 

 
 
 
 

 
Fig. 1. Cutout 
 
Mixup: Mixup [6] reduces overfitting by creating new im-

ages which are the convex combination of image pairs and 
their labels. Mixup also increases robustness to adversarial 
examples and much better generalization in case of noisy im-
age labels. An example of mixup augmentation is shown in 
fig. 2: 

 
 
 
 

 
Fig. 2. Mixup 
 
Cutmix: In the case of Cutmix [5], multiple patches are 

cropped and mixed amongst the images. Ground truth labels 
are also mixed in the same proportion as the proportion of the 
cut patches. Cutmix generally provides robustness against 
corrupted labels. An example of cutmix augmentation is 
shown in fig. 3: 

 

 

Fig. 3. CutMix 

5 EXPERIMENTS AND DISCUSSIONS 

In this section, experimental results on the Bengali Handwrit-
ten dataset are discussed. In all total of 14 experiments were 
conducted with a static-fixed validation dataset comprising 
20% data, while the remaining 80% was used for model train-
ing.  Results suggest that in general deep/large models 
(seResnext50 variant) demonstrate much better training per-
formance compared to shallow Resnet34 [26] models. These 
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larger models however tend to easily overfit in less aggressive 
augmentation scenarios and hence we used multiple complex 
image augmentation techniques such as Cutmix, Mixup, Cut-
out, and all possible combinations of those to aid model gen-
eralization and better validation performance.  

Further, we also observe that a vanilla Cross-Entropy loss 
does not always work best in classification scenarios and a 
different version of the cross-entropy loss i.e. Online Hard 
Example Mining loss worked better in almost all the compara-
ble cases. 
 

A. Results 
 
Macro averaged recall is presented for the experiments 

conducted. The experiment-parameter settings are the same as 
that of our previous study with Resnet34 models [26]. For 
completeness, we are listing down the parameters of the pipe-
line. 
 

 Image Size: 136 X 237  

 Augmentation parameters for all experiments:   
- Baseline Augmentation: Gaussian Noise, 

ShiftScaleRotate (Sigma = -1; shift limit = 0.01, 
scale limit = 0.1, rotate limit = 30)  

- Cutmix Augmentation: The combination ratio λ 
between two data points is sampled from the beta 
distribution Beta (β, β). In our all experiments, we 
set β to 0.4, that is λ is sampled from the uniform 
distribution (0, 0.4).  

- Cutout Augmentation: Mask size = 80, Probabil-
ity = 1. 

- Mixup Augmentation: The combination ratio λ 
between two data points is sampled from the beta 
distribution Beta (β, β). In all experiments, we set 
β to 0.4, which is λ is sampled from the uniform 
distribution (0, 0.4). 

         (1) 

 are raw input vectors 
 

                                    (2) 

 are one-hot label encodings 
 

- OHEM Loss: The Rate parameter in OHEM de-
fines the proportion of examples in a batch to be 
considered as hard examples. In our experiments, 
we used Rate = 0.5 or 50% of all examples in a 
batch to be considered as hard examples. 

 In any experiments, if more than 1 augmentations 
(apart from baseline) were used, then equal applica-
tion probability was assigned to all augmentations 
[26]. 

 
For all experiments, all other augmentations mentioned are 

in addition to the baseline augmentation. The results from our 
previous study for ResNet34 models [26] are shown in Table 1: 

Table 1. performance of Resnet34 model with a combination of 
augmentations and loss functions [26] 

Aug: 1 Aug: 2 Aug: 3 Loss 
Function 

Train 
Metric 
Value 

Validation 
Metric 
Value 

None None None CE Loss 93.94 91.02 

None None None 
OHEM 
Loss 

93.16 91.75 

CutMix None None CE Loss 94.30 92.4 

CutMix None None 
OHEM 
Loss 

92.67 91.97 

CutMix Mixup None CE Loss 93.39 92.36 

CutMix Mixup None 
OHEM 
Loss 

93.56 92.84 

Cutout None None CE Loss 93.21 90.68 

Cutout None None 
OHEM 
Loss 

91.88 90.8 

Cutout CutMix None CE Loss 93.53 92.06 

Cutout CutMix None 
OHEM 
Loss 

93.57 92.76 

Cutout Mixup None CE Loss 93.57 91.66 

Cutout Mixup None 
OHEM 
Loss 

92.57 91.71 

Cutout Mixup CutMix CE Loss 93.46 92.92 

Cutout Mixup CutMix 
OHEM 
Loss 

93.07 92.77 

 
Results from the deep se-Resnext50_32X4D model are ap-
pended in the below table: 

Table 2. performance of se-Resnext50_32X4d model with a 
combination of augmentations and loss functions 

 
Aug: 1 Aug: 2 Aug: 3 Loss 

Function 
Train 
Metric 
Value 

Valida-
tion Met-
ric Value 

None None None CE Loss 96.64 93.51 

None None None OHEM 
Loss 

95.76 94.28 

CutMix None None CE Loss 96.87 94.72 

CutMix None None OHEM 
Loss 

96.05 94.89 

CutMix Mixup None CE Loss 96.23 95.14 

CutMix Mixup None OHEM 
Loss 

95.98 95.25 
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Cutout None None CE Loss 95.87 93.22 

Cutout None None OHEM 
Loss 

94.54 93.25 

Cutout CutMix None CE Loss 96.76 94.56 

Cutout CutMix None OHEM 
Loss 

95.93 94.88 

Cutout Mixup None CE Loss 96.93 93.96 

Cutout Mixup None OHEM 
Loss 

95.32 94.08 

Cutout Mixup CutMix CE Loss 95.94 95.36 

Cutout Mixup CutMix OHEM 
Loss 

96.21 95.75 

 
Although no hyperparameter tuning was conducted for 

these experiments, we believe the observed trends concerning 
model performance and augmentations, loss functions will 
hold.  

In general, and as expected, the larger/deep the model the 
better its training and validation score. However, we also ob-
serve that these larger models exhibit higher overfitting. To 
overcome this problem of overfitting, we deploy another loss 
function called Online Hard Example Mining loss, which, 
lowers overfitting in deep models.  

In the below charts, we present an analysis of the model 
performance across various criteria such as model category, 
the strength of augmentations, and loss functions. 

 
 
 
 
 
 
 
 

 
 

 
 
 

 

Fig. 4. seResNext50 Model Performance 

For deep models, such as seResNext50_32X4d, aggressive 
augmentations coupled with online hard example-based loss 
function (OHEM) demonstrates the highest validation perfor-
mance. This is since the aggressive augmentations help increase 
generalization power and allows the same model to see newer 
novel training examples, ultimately helping improve validation 
performance.   

It is further noteworthy to see that for the 
seResNext50_32X4d model, the OHEM loss always performs 
better than the respective augmentation configuration’s CE loss-
based performance (eg: CutMix CE loss vs Cutmix OHEM loss). 
 

B. Discussion 
 

1) Analysis of augmentations for best macro averaged recall 
performance for Deep Networks 
 

 To understand which augmentation works best for the deep 
network (seResNext50_32X4d), we analyze the maximum vali-
dation score for each unique augmentation configuration across 
experiments for the seResNext50_32X4d model. 

 

Fig. 5. seResNext50 Maximum Macro Averaged Recall Values 

Most aggressive augmentation (i.e. all 3 augmentations in 
scope) registers the highest macro averaged recall on the valida-
tion set, followed by CutMix+Mixup augmentation, while Cut-
out registers the worst performance overall.  

We note that aggressive augmentation helps model perfor-
mance since the model encounters novel examples while train-
ing which ultimately helps in increasing the generalization 
power of the model.  
We further note that for deep models considered here, Cutout 
generally lowers the validation score, and to use cutout, it is 
advised to deploy it within a pipeline that includes other ag-
gressive augmentations as well. 
 

2) Analysis of augmentations for on-average performance in 
Deep Networks 
 

We analyze the average performance of each augmentation 
by averaging unique augmentation’s performance across all 
conducted experiments for the seResNext50_32X4d model. 

 

Fig. 6. seResNext50 Average Macro Averaged Recall Values 

Most aggressive augmentation registers the highest average 
score across experiments, followed by CutMix+Mixup. Base-
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Line and Cutout form the least performing augmentations. In-
terestingly, BaseLine performs better than Cutout as cutout 
leads to loss of information, while the baseline simply adds 
new/noisy information to the batch pipeline.  

3) Analysis of augmentations for overfitting in Deep Networks 
 

We analyze the average overfitting (i.e. train vs validation 
performance) across augmentations for the seResNext50_32X4d 
model.  

 

Fig. 7. seResNext50 Average Overfitting Details 

As expected, the experiments with the most aggressive aug-
mentation (Cutout+CutMix+Mixup) registers the lowest overfit-
ting followed by CutMix+Mixup. BaseLine augmentation, as 
expected, registers the highest overfitting. 

 
4) Analysis of loss functions for best macro averaged recall per-

formance for Deep Networks 
 

To understand which loss function works best for the deep 
network (seResNext50_32X4d), we analyze the max validation 
score for each unique loss function configuration across experi-
ments. 

 

Fig. 8. seResNext50 Max Macro Averaged Recall Details 

As expected, OHEM loss registers a higher max score on the 
validation dataset due to its higher generalization ability. 

 
5) Analysis of loss functions for on-average performance in 

Deep Networks 
 

We analyze the average performance of each loss function 
by averaging the loss function’s performance across all con-
ducted experiments for the seResNext50_32X4d model.  

 

Fig. 9. seResNext50 Average Macro Averaged Recall Details 

As expected, OHEM loss registers a higher average score on 
the validation dataset due to its higher generalization ability.  

6) Analysis of loss functions for overfitting in Deep Networks 
 

We further analyze the average overfitting (i.e. train – valida-
tion performance) across loss functions for the 
seResNext50_32X4d model. 

 

 

Fig. 10. seResNext50 Average Overfitting Details 

OHEM loss performs significantly better than vanilla CE loss 
in terms of reducing overfitting across experiments. Overall, 
overfitting is reduced approximately by a factor of half while 
using OHEM in place of CE loss function for deep networks. 

6 CONCLUSION 

In our previous study [26], we thoroughly evaluated the im-
pact of various augmentation strategies on model performance 
for shallow models (Resnet34). In this paper evaluated all pos-
sible combinations of highly advanced image augmentation 
pipelines for deep CNN models (seResNext50_32X4d) and pro-
vide the following recommendations based on our analysis. 

 In contrast to our previous study [26] on shallow models 
(Resnet34), current results found from our analysis show that 
heavy image augmentation techniques with “Online Hard Ex-
ample Mining” achieve the highest validation macro averaged 
recall score for deep models. 

This suggests separate augmentation strategies depending 
upon the depth and complexity of the network. Generally, for 
deep networks, OHEM loss provides better results. In line with 
results from our previous study on Resnet34 [26], we find that 
the inclusion of Cutout in low augmentation settings ends up 
hurting the overall model performance. Thus, it is recommend-
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ed to use Cutout augmentation only with heavy augmentation 
pipelines. 
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